\(\int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^3} \, dx\) [920]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 33, antiderivative size = 229 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^3} \, dx=\frac {A x}{a^3}+\frac {\left (5 a^2 A b^3-2 A b^5+2 a^5 B+a^3 b^2 B-3 a^4 b (2 A+C)\right ) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 (a-b)^{5/2} (a+b)^{5/2} d}+\frac {\left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {\left (2 A b^4+3 a^3 b B-a^4 C-a^2 b^2 (5 A+2 C)\right ) \tan (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))} \]

[Out]

A*x/a^3+(5*a^2*A*b^3-2*A*b^5+2*a^5*B+a^3*b^2*B-3*a^4*b*(2*A+C))*arctanh((a-b)^(1/2)*tan(1/2*d*x+1/2*c)/(a+b)^(
1/2))/a^3/(a-b)^(5/2)/(a+b)^(5/2)/d+1/2*(A*b^2-a*(B*b-C*a))*tan(d*x+c)/a/(a^2-b^2)/d/(a+b*sec(d*x+c))^2-1/2*(2
*A*b^4+3*B*a^3*b-a^4*C-a^2*b^2*(5*A+2*C))*tan(d*x+c)/a^2/(a^2-b^2)^2/d/(a+b*sec(d*x+c))

Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 229, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.152, Rules used = {4145, 4004, 3916, 2738, 214} \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^3} \, dx=\frac {A x}{a^3}+\frac {\tan (c+d x) \left (A b^2-a (b B-a C)\right )}{2 a d \left (a^2-b^2\right ) (a+b \sec (c+d x))^2}-\frac {\tan (c+d x) \left (a^4 (-C)+3 a^3 b B-a^2 b^2 (5 A+2 C)+2 A b^4\right )}{2 a^2 d \left (a^2-b^2\right )^2 (a+b \sec (c+d x))}+\frac {\left (2 a^5 B-3 a^4 b (2 A+C)+a^3 b^2 B+5 a^2 A b^3-2 A b^5\right ) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 d (a-b)^{5/2} (a+b)^{5/2}} \]

[In]

Int[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^3,x]

[Out]

(A*x)/a^3 + ((5*a^2*A*b^3 - 2*A*b^5 + 2*a^5*B + a^3*b^2*B - 3*a^4*b*(2*A + C))*ArcTanh[(Sqrt[a - b]*Tan[(c + d
*x)/2])/Sqrt[a + b]])/(a^3*(a - b)^(5/2)*(a + b)^(5/2)*d) + ((A*b^2 - a*(b*B - a*C))*Tan[c + d*x])/(2*a*(a^2 -
 b^2)*d*(a + b*Sec[c + d*x])^2) - ((2*A*b^4 + 3*a^3*b*B - a^4*C - a^2*b^2*(5*A + 2*C))*Tan[c + d*x])/(2*a^2*(a
^2 - b^2)^2*d*(a + b*Sec[c + d*x]))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 2738

Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Dist[2*(e/d), Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}
, x] && NeQ[a^2 - b^2, 0]

Rule 3916

Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Dist[1/b, Int[1/(1 + (a/b)*Si
n[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4004

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[c*(x/a),
x] - Dist[(b*c - a*d)/a, Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
b*c - a*d, 0]

Rule 4145

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
 (a_))^(m_), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(a*f*(m + 1)
*(a^2 - b^2))), x] + Dist[1/(a*(m + 1)*(a^2 - b^2)), Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*(a^2 - b^2)*(m +
1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + 2)*Csc[e + f*x]^2, x], x], x] /;
FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {\left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {\int \frac {-2 A \left (a^2-b^2\right )+2 a (A b-a B+b C) \sec (c+d x)-\left (A b^2-a (b B-a C)\right ) \sec ^2(c+d x)}{(a+b \sec (c+d x))^2} \, dx}{2 a \left (a^2-b^2\right )} \\ & = \frac {\left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {\left (2 A b^4+3 a^3 b B-a^4 C-a^2 b^2 (5 A+2 C)\right ) \tan (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\int \frac {2 A \left (a^2-b^2\right )^2+a \left (A b^3+2 a^3 B+a b^2 B-a^2 b (4 A+3 C)\right ) \sec (c+d x)}{a+b \sec (c+d x)} \, dx}{2 a^2 \left (a^2-b^2\right )^2} \\ & = \frac {A x}{a^3}+\frac {\left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {\left (2 A b^4+3 a^3 b B-a^4 C-a^2 b^2 (5 A+2 C)\right ) \tan (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\left (5 a^2 A b^3-2 A b^5+2 a^5 B+a^3 b^2 B-3 a^4 b (2 A+C)\right ) \int \frac {\sec (c+d x)}{a+b \sec (c+d x)} \, dx}{2 a^3 \left (a^2-b^2\right )^2} \\ & = \frac {A x}{a^3}+\frac {\left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {\left (2 A b^4+3 a^3 b B-a^4 C-a^2 b^2 (5 A+2 C)\right ) \tan (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\left (5 a^2 A b^3-2 A b^5+2 a^5 B+a^3 b^2 B-3 a^4 b (2 A+C)\right ) \int \frac {1}{1+\frac {a \cos (c+d x)}{b}} \, dx}{2 a^3 b \left (a^2-b^2\right )^2} \\ & = \frac {A x}{a^3}+\frac {\left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {\left (2 A b^4+3 a^3 b B-a^4 C-a^2 b^2 (5 A+2 C)\right ) \tan (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))}+\frac {\left (5 a^2 A b^3-2 A b^5+2 a^5 B+a^3 b^2 B-3 a^4 b (2 A+C)\right ) \text {Subst}\left (\int \frac {1}{1+\frac {a}{b}+\left (1-\frac {a}{b}\right ) x^2} \, dx,x,\tan \left (\frac {1}{2} (c+d x)\right )\right )}{a^3 b \left (a^2-b^2\right )^2 d} \\ & = \frac {A x}{a^3}-\frac {\left (6 a^4 A b-5 a^2 A b^3+2 A b^5-2 a^5 B-a^3 b^2 B+3 a^4 b C\right ) \text {arctanh}\left (\frac {\sqrt {a-b} \tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {a+b}}\right )}{a^3 (a-b)^{5/2} (a+b)^{5/2} d}+\frac {\left (A b^2-a (b B-a C)\right ) \tan (c+d x)}{2 a \left (a^2-b^2\right ) d (a+b \sec (c+d x))^2}-\frac {\left (2 A b^4+3 a^3 b B-a^4 C-a^2 b^2 (5 A+2 C)\right ) \tan (c+d x)}{2 a^2 \left (a^2-b^2\right )^2 d (a+b \sec (c+d x))} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 6.10 (sec) , antiderivative size = 793, normalized size of antiderivative = 3.46 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^3} \, dx=\frac {(b+a \cos (c+d x)) \sec (c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (-\frac {4 i \left (5 a^2 A b^3-2 A b^5+2 a^5 B+a^3 b^2 B-3 a^4 b (2 A+C)\right ) \arctan \left (\frac {(i \cos (c)+\sin (c)) \left (a \sin (c)+(-b+a \cos (c)) \tan \left (\frac {d x}{2}\right )\right )}{\sqrt {a^2-b^2} \sqrt {(\cos (c)-i \sin (c))^2}}\right ) (b+a \cos (c+d x))^2 (\cos (c)-i \sin (c))}{\left (a^2-b^2\right )^{5/2} \sqrt {(\cos (c)-i \sin (c))^2}}+\frac {\sec (c) \left (2 A \left (a^2-b^2\right )^2 \left (a^2+2 b^2\right ) d x \cos (c)+4 a A b \left (a^2-b^2\right )^2 d x \cos (d x)+4 a^5 A b d x \cos (2 c+d x)-8 a^3 A b^3 d x \cos (2 c+d x)+4 a A b^5 d x \cos (2 c+d x)+a^6 A d x \cos (c+2 d x)-2 a^4 A b^2 d x \cos (c+2 d x)+a^2 A b^4 d x \cos (c+2 d x)+a^6 A d x \cos (3 c+2 d x)-2 a^4 A b^2 d x \cos (3 c+2 d x)+a^2 A b^4 d x \cos (3 c+2 d x)-6 a^4 A b^2 \sin (c)-9 a^2 A b^4 \sin (c)+6 A b^6 \sin (c)+4 a^5 b B \sin (c)+7 a^3 b^3 B \sin (c)-2 a b^5 B \sin (c)-2 a^6 C \sin (c)-5 a^4 b^2 C \sin (c)-2 a^2 b^4 C \sin (c)+17 a^3 A b^3 \sin (d x)-8 a A b^5 \sin (d x)-11 a^4 b^2 B \sin (d x)+2 a^2 b^4 B \sin (d x)+5 a^5 b C \sin (d x)+4 a^3 b^3 C \sin (d x)-7 a^3 A b^3 \sin (2 c+d x)+4 a A b^5 \sin (2 c+d x)+5 a^4 b^2 B \sin (2 c+d x)-2 a^2 b^4 B \sin (2 c+d x)-3 a^5 b C \sin (2 c+d x)+6 a^4 A b^2 \sin (c+2 d x)-3 a^2 A b^4 \sin (c+2 d x)-4 a^5 b B \sin (c+2 d x)+a^3 b^3 B \sin (c+2 d x)+2 a^6 C \sin (c+2 d x)+a^4 b^2 C \sin (c+2 d x)\right )}{\left (a^2-b^2\right )^2}\right )}{2 a^3 d (A+2 C+2 B \cos (c+d x)+A \cos (2 (c+d x))) (a+b \sec (c+d x))^3} \]

[In]

Integrate[(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)/(a + b*Sec[c + d*x])^3,x]

[Out]

((b + a*Cos[c + d*x])*Sec[c + d*x]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*(((-4*I)*(5*a^2*A*b^3 - 2*A*b^5 + 2
*a^5*B + a^3*b^2*B - 3*a^4*b*(2*A + C))*ArcTan[((I*Cos[c] + Sin[c])*(a*Sin[c] + (-b + a*Cos[c])*Tan[(d*x)/2]))
/(Sqrt[a^2 - b^2]*Sqrt[(Cos[c] - I*Sin[c])^2])]*(b + a*Cos[c + d*x])^2*(Cos[c] - I*Sin[c]))/((a^2 - b^2)^(5/2)
*Sqrt[(Cos[c] - I*Sin[c])^2]) + (Sec[c]*(2*A*(a^2 - b^2)^2*(a^2 + 2*b^2)*d*x*Cos[c] + 4*a*A*b*(a^2 - b^2)^2*d*
x*Cos[d*x] + 4*a^5*A*b*d*x*Cos[2*c + d*x] - 8*a^3*A*b^3*d*x*Cos[2*c + d*x] + 4*a*A*b^5*d*x*Cos[2*c + d*x] + a^
6*A*d*x*Cos[c + 2*d*x] - 2*a^4*A*b^2*d*x*Cos[c + 2*d*x] + a^2*A*b^4*d*x*Cos[c + 2*d*x] + a^6*A*d*x*Cos[3*c + 2
*d*x] - 2*a^4*A*b^2*d*x*Cos[3*c + 2*d*x] + a^2*A*b^4*d*x*Cos[3*c + 2*d*x] - 6*a^4*A*b^2*Sin[c] - 9*a^2*A*b^4*S
in[c] + 6*A*b^6*Sin[c] + 4*a^5*b*B*Sin[c] + 7*a^3*b^3*B*Sin[c] - 2*a*b^5*B*Sin[c] - 2*a^6*C*Sin[c] - 5*a^4*b^2
*C*Sin[c] - 2*a^2*b^4*C*Sin[c] + 17*a^3*A*b^3*Sin[d*x] - 8*a*A*b^5*Sin[d*x] - 11*a^4*b^2*B*Sin[d*x] + 2*a^2*b^
4*B*Sin[d*x] + 5*a^5*b*C*Sin[d*x] + 4*a^3*b^3*C*Sin[d*x] - 7*a^3*A*b^3*Sin[2*c + d*x] + 4*a*A*b^5*Sin[2*c + d*
x] + 5*a^4*b^2*B*Sin[2*c + d*x] - 2*a^2*b^4*B*Sin[2*c + d*x] - 3*a^5*b*C*Sin[2*c + d*x] + 6*a^4*A*b^2*Sin[c +
2*d*x] - 3*a^2*A*b^4*Sin[c + 2*d*x] - 4*a^5*b*B*Sin[c + 2*d*x] + a^3*b^3*B*Sin[c + 2*d*x] + 2*a^6*C*Sin[c + 2*
d*x] + a^4*b^2*C*Sin[c + 2*d*x]))/(a^2 - b^2)^2))/(2*a^3*d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*(c + d*x)])*(
a + b*Sec[c + d*x])^3)

Maple [A] (verified)

Time = 0.43 (sec) , antiderivative size = 345, normalized size of antiderivative = 1.51

method result size
derivativedivides \(\frac {\frac {2 A \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{3}}+\frac {\frac {2 \left (-\frac {\left (6 A \,a^{2} b^{2}+a A \,b^{3}-2 A \,b^{4}-4 B \,a^{3} b -B \,a^{2} b^{2}+2 a^{4} C +a^{3} b C +2 C \,a^{2} b^{2}\right ) a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 \left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}+\frac {a \left (6 A \,a^{2} b^{2}-a A \,b^{3}-2 A \,b^{4}-4 B \,a^{3} b +B \,a^{2} b^{2}+2 a^{4} C -a^{3} b C +2 C \,a^{2} b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right ) \left (a -b \right )^{2}}\right )}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b -a -b \right )^{2}}-\frac {\left (6 A \,a^{4} b -5 a^{2} A \,b^{3}+2 A \,b^{5}-2 a^{5} B -a^{3} b^{2} B +3 a^{4} b C \right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{\left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {\left (a +b \right ) \left (a -b \right )}}}{a^{3}}}{d}\) \(345\)
default \(\frac {\frac {2 A \arctan \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{a^{3}}+\frac {\frac {2 \left (-\frac {\left (6 A \,a^{2} b^{2}+a A \,b^{3}-2 A \,b^{4}-4 B \,a^{3} b -B \,a^{2} b^{2}+2 a^{4} C +a^{3} b C +2 C \,a^{2} b^{2}\right ) a \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 \left (a -b \right ) \left (a^{2}+2 a b +b^{2}\right )}+\frac {a \left (6 A \,a^{2} b^{2}-a A \,b^{3}-2 A \,b^{4}-4 B \,a^{3} b +B \,a^{2} b^{2}+2 a^{4} C -a^{3} b C +2 C \,a^{2} b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 \left (a +b \right ) \left (a -b \right )^{2}}\right )}{\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a -\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} b -a -b \right )^{2}}-\frac {\left (6 A \,a^{4} b -5 a^{2} A \,b^{3}+2 A \,b^{5}-2 a^{5} B -a^{3} b^{2} B +3 a^{4} b C \right ) \operatorname {arctanh}\left (\frac {\left (a -b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (a +b \right ) \left (a -b \right )}}\right )}{\left (a^{4}-2 a^{2} b^{2}+b^{4}\right ) \sqrt {\left (a +b \right ) \left (a -b \right )}}}{a^{3}}}{d}\) \(345\)
risch \(\text {Expression too large to display}\) \(1461\)

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(2*A/a^3*arctan(tan(1/2*d*x+1/2*c))+2/a^3*((-1/2*(6*A*a^2*b^2+A*a*b^3-2*A*b^4-4*B*a^3*b-B*a^2*b^2+2*C*a^4+
C*a^3*b+2*C*a^2*b^2)*a/(a-b)/(a^2+2*a*b+b^2)*tan(1/2*d*x+1/2*c)^3+1/2*a*(6*A*a^2*b^2-A*a*b^3-2*A*b^4-4*B*a^3*b
+B*a^2*b^2+2*C*a^4-C*a^3*b+2*C*a^2*b^2)/(a+b)/(a-b)^2*tan(1/2*d*x+1/2*c))/(tan(1/2*d*x+1/2*c)^2*a-tan(1/2*d*x+
1/2*c)^2*b-a-b)^2-1/2*(6*A*a^4*b-5*A*a^2*b^3+2*A*b^5-2*B*a^5-B*a^3*b^2+3*C*a^4*b)/(a^4-2*a^2*b^2+b^4)/((a+b)*(
a-b))^(1/2)*arctanh((a-b)*tan(1/2*d*x+1/2*c)/((a+b)*(a-b))^(1/2))))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 589 vs. \(2 (213) = 426\).

Time = 0.37 (sec) , antiderivative size = 1237, normalized size of antiderivative = 5.40 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^3} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^3,x, algorithm="fricas")

[Out]

[1/4*(4*(A*a^8 - 3*A*a^6*b^2 + 3*A*a^4*b^4 - A*a^2*b^6)*d*x*cos(d*x + c)^2 + 8*(A*a^7*b - 3*A*a^5*b^3 + 3*A*a^
3*b^5 - A*a*b^7)*d*x*cos(d*x + c) + 4*(A*a^6*b^2 - 3*A*a^4*b^4 + 3*A*a^2*b^6 - A*b^8)*d*x - (2*B*a^5*b^2 - 3*(
2*A + C)*a^4*b^3 + B*a^3*b^4 + 5*A*a^2*b^5 - 2*A*b^7 + (2*B*a^7 - 3*(2*A + C)*a^6*b + B*a^5*b^2 + 5*A*a^4*b^3
- 2*A*a^2*b^5)*cos(d*x + c)^2 + 2*(2*B*a^6*b - 3*(2*A + C)*a^5*b^2 + B*a^4*b^3 + 5*A*a^3*b^4 - 2*A*a*b^6)*cos(
d*x + c))*sqrt(a^2 - b^2)*log((2*a*b*cos(d*x + c) - (a^2 - 2*b^2)*cos(d*x + c)^2 - 2*sqrt(a^2 - b^2)*(b*cos(d*
x + c) + a)*sin(d*x + c) + 2*a^2 - b^2)/(a^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + b^2)) + 2*(C*a^7*b - 3*B*a^
6*b^2 + (5*A + C)*a^5*b^3 + 3*B*a^4*b^4 - (7*A + 2*C)*a^3*b^5 + 2*A*a*b^7 + (2*C*a^8 - 4*B*a^7*b + (6*A - C)*a
^6*b^2 + 5*B*a^5*b^3 - (9*A + C)*a^4*b^4 - B*a^3*b^5 + 3*A*a^2*b^6)*cos(d*x + c))*sin(d*x + c))/((a^11 - 3*a^9
*b^2 + 3*a^7*b^4 - a^5*b^6)*d*cos(d*x + c)^2 + 2*(a^10*b - 3*a^8*b^3 + 3*a^6*b^5 - a^4*b^7)*d*cos(d*x + c) + (
a^9*b^2 - 3*a^7*b^4 + 3*a^5*b^6 - a^3*b^8)*d), 1/2*(2*(A*a^8 - 3*A*a^6*b^2 + 3*A*a^4*b^4 - A*a^2*b^6)*d*x*cos(
d*x + c)^2 + 4*(A*a^7*b - 3*A*a^5*b^3 + 3*A*a^3*b^5 - A*a*b^7)*d*x*cos(d*x + c) + 2*(A*a^6*b^2 - 3*A*a^4*b^4 +
 3*A*a^2*b^6 - A*b^8)*d*x + (2*B*a^5*b^2 - 3*(2*A + C)*a^4*b^3 + B*a^3*b^4 + 5*A*a^2*b^5 - 2*A*b^7 + (2*B*a^7
- 3*(2*A + C)*a^6*b + B*a^5*b^2 + 5*A*a^4*b^3 - 2*A*a^2*b^5)*cos(d*x + c)^2 + 2*(2*B*a^6*b - 3*(2*A + C)*a^5*b
^2 + B*a^4*b^3 + 5*A*a^3*b^4 - 2*A*a*b^6)*cos(d*x + c))*sqrt(-a^2 + b^2)*arctan(-sqrt(-a^2 + b^2)*(b*cos(d*x +
 c) + a)/((a^2 - b^2)*sin(d*x + c))) + (C*a^7*b - 3*B*a^6*b^2 + (5*A + C)*a^5*b^3 + 3*B*a^4*b^4 - (7*A + 2*C)*
a^3*b^5 + 2*A*a*b^7 + (2*C*a^8 - 4*B*a^7*b + (6*A - C)*a^6*b^2 + 5*B*a^5*b^3 - (9*A + C)*a^4*b^4 - B*a^3*b^5 +
 3*A*a^2*b^6)*cos(d*x + c))*sin(d*x + c))/((a^11 - 3*a^9*b^2 + 3*a^7*b^4 - a^5*b^6)*d*cos(d*x + c)^2 + 2*(a^10
*b - 3*a^8*b^3 + 3*a^6*b^5 - a^4*b^7)*d*cos(d*x + c) + (a^9*b^2 - 3*a^7*b^4 + 3*a^5*b^6 - a^3*b^8)*d)]

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^3} \, dx=\int \frac {A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}}{\left (a + b \sec {\left (c + d x \right )}\right )^{3}}\, dx \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+b*sec(d*x+c))**3,x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)/(a + b*sec(c + d*x))**3, x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^3} \, dx=\text {Exception raised: ValueError} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a^2-4*b^2>0)', see `assume?`
 for more de

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 606 vs. \(2 (213) = 426\).

Time = 0.39 (sec) , antiderivative size = 606, normalized size of antiderivative = 2.65 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^3} \, dx=\frac {\frac {{\left (2 \, B a^{5} - 6 \, A a^{4} b - 3 \, C a^{4} b + B a^{3} b^{2} + 5 \, A a^{2} b^{3} - 2 \, A b^{5}\right )} {\left (\pi \left \lfloor \frac {d x + c}{2 \, \pi } + \frac {1}{2} \right \rfloor \mathrm {sgn}\left (-2 \, a + 2 \, b\right ) + \arctan \left (-\frac {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{\sqrt {-a^{2} + b^{2}}}\right )\right )}}{{\left (a^{7} - 2 \, a^{5} b^{2} + a^{3} b^{4}\right )} \sqrt {-a^{2} + b^{2}}} + \frac {{\left (d x + c\right )} A}{a^{3}} - \frac {2 \, C a^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 4 \, B a^{4} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - C a^{4} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 6 \, A a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 3 \, B a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + C a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 5 \, A a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + B a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, C a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 3 \, A a b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 2 \, A b^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 2 \, C a^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 4 \, B a^{4} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - C a^{4} b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 6 \, A a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, B a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - C a^{3} b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 5 \, A a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - B a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 2 \, C a^{2} b^{3} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, A a b^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 2 \, A b^{5} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a^{6} - 2 \, a^{4} b^{2} + a^{2} b^{4}\right )} {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a - b\right )}^{2}}}{d} \]

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+b*sec(d*x+c))^3,x, algorithm="giac")

[Out]

((2*B*a^5 - 6*A*a^4*b - 3*C*a^4*b + B*a^3*b^2 + 5*A*a^2*b^3 - 2*A*b^5)*(pi*floor(1/2*(d*x + c)/pi + 1/2)*sgn(-
2*a + 2*b) + arctan(-(a*tan(1/2*d*x + 1/2*c) - b*tan(1/2*d*x + 1/2*c))/sqrt(-a^2 + b^2)))/((a^7 - 2*a^5*b^2 +
a^3*b^4)*sqrt(-a^2 + b^2)) + (d*x + c)*A/a^3 - (2*C*a^5*tan(1/2*d*x + 1/2*c)^3 - 4*B*a^4*b*tan(1/2*d*x + 1/2*c
)^3 - C*a^4*b*tan(1/2*d*x + 1/2*c)^3 + 6*A*a^3*b^2*tan(1/2*d*x + 1/2*c)^3 + 3*B*a^3*b^2*tan(1/2*d*x + 1/2*c)^3
 + C*a^3*b^2*tan(1/2*d*x + 1/2*c)^3 - 5*A*a^2*b^3*tan(1/2*d*x + 1/2*c)^3 + B*a^2*b^3*tan(1/2*d*x + 1/2*c)^3 -
2*C*a^2*b^3*tan(1/2*d*x + 1/2*c)^3 - 3*A*a*b^4*tan(1/2*d*x + 1/2*c)^3 + 2*A*b^5*tan(1/2*d*x + 1/2*c)^3 - 2*C*a
^5*tan(1/2*d*x + 1/2*c) + 4*B*a^4*b*tan(1/2*d*x + 1/2*c) - C*a^4*b*tan(1/2*d*x + 1/2*c) - 6*A*a^3*b^2*tan(1/2*
d*x + 1/2*c) + 3*B*a^3*b^2*tan(1/2*d*x + 1/2*c) - C*a^3*b^2*tan(1/2*d*x + 1/2*c) - 5*A*a^2*b^3*tan(1/2*d*x + 1
/2*c) - B*a^2*b^3*tan(1/2*d*x + 1/2*c) - 2*C*a^2*b^3*tan(1/2*d*x + 1/2*c) + 3*A*a*b^4*tan(1/2*d*x + 1/2*c) + 2
*A*b^5*tan(1/2*d*x + 1/2*c))/((a^6 - 2*a^4*b^2 + a^2*b^4)*(a*tan(1/2*d*x + 1/2*c)^2 - b*tan(1/2*d*x + 1/2*c)^2
 - a - b)^2))/d

Mupad [B] (verification not implemented)

Time = 28.75 (sec) , antiderivative size = 8147, normalized size of antiderivative = 35.58 \[ \int \frac {A+B \sec (c+d x)+C \sec ^2(c+d x)}{(a+b \sec (c+d x))^3} \, dx=\text {Too large to display} \]

[In]

int((A + B/cos(c + d*x) + C/cos(c + d*x)^2)/(a + b/cos(c + d*x))^3,x)

[Out]

((tan(c/2 + (d*x)/2)^3*(2*C*a^4 - 2*A*b^4 + 6*A*a^2*b^2 - B*a^2*b^2 + 2*C*a^2*b^2 + A*a*b^3 - 4*B*a^3*b + C*a^
3*b))/((a^2*b - a^3)*(a + b)^2) - (tan(c/2 + (d*x)/2)*(2*A*b^4 - 2*C*a^4 - 6*A*a^2*b^2 - B*a^2*b^2 - 2*C*a^2*b
^2 + A*a*b^3 + 4*B*a^3*b + C*a^3*b))/((a + b)*(a^4 - 2*a^3*b + a^2*b^2)))/(d*(2*a*b - tan(c/2 + (d*x)/2)^2*(2*
a^2 - 2*b^2) + tan(c/2 + (d*x)/2)^4*(a^2 - 2*a*b + b^2) + a^2 + b^2)) + (2*A*atan(((A*((8*tan(c/2 + (d*x)/2)*(
4*A^2*a^10 + 8*A^2*b^10 + 4*B^2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^
4*b^6 - 48*A^2*a^5*b^5 - 52*A^2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 + 9*C^
2*a^8*b^2 - 24*A*B*a^9*b - 12*B*C*a^9*b - 4*A*B*a^3*b^7 + 2*A*B*a^5*b^5 + 8*A*B*a^7*b^3 + 12*A*C*a^4*b^6 - 30*
A*C*a^6*b^4 + 36*A*C*a^8*b^2 - 6*B*C*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*
a^8*b^3 - 3*a^9*b^2) + (A*((8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*a^7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 -
36*A*a^10*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b^7 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a
^13*b^2 + 6*C*a^9*b^6 - 6*C*a^10*b^5 - 12*C*a^11*b^4 + 12*C*a^12*b^3 + 6*C*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b
 - 6*C*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) - (A*tan
(c/2 + (d*x)/2)*(8*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*
a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2)*8i)/(a^3*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a
^8*b^3 - 3*a^9*b^2)))*1i)/a^3))/a^3 + (A*((8*tan(c/2 + (d*x)/2)*(4*A^2*a^10 + 8*A^2*b^10 + 4*B^2*a^10 - 8*A^2*
a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*b^6 - 48*A^2*a^5*b^5 - 52*A^2*a^6*b^4 + 32*
A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 + 9*C^2*a^8*b^2 - 24*A*B*a^9*b - 12*B*C*a^9*b - 4*A
*B*a^3*b^7 + 2*A*B*a^5*b^5 + 8*A*B*a^7*b^3 + 12*A*C*a^4*b^6 - 30*A*C*a^6*b^4 + 36*A*C*a^8*b^2 - 6*B*C*a^7*b^3)
)/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2) - (A*((8*(4*A*a^15 + 4*B
*a^15 - 4*A*a^6*b^9 + 2*A*a^7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A*a^10*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3
- 8*A*a^13*b^2 - 2*B*a^8*b^7 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*b^2 + 6*C*a^9*b^6 - 6*C*a^10*b^5 - 12*C*a
^11*b^4 + 12*C*a^12*b^3 + 6*C*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b - 6*C*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^
7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) + (A*tan(c/2 + (d*x)/2)*(8*a^15*b - 8*a^6*b^10 + 8*a^
7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2)*8i)/(a^3
*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2)))*1i)/a^3))/a^3)/((16*(4*
A^3*b^9 + 4*A*B^2*a^9 - 4*A^2*B*a^9 - 2*A^3*a*b^8 + 12*A^3*a^8*b - 18*A^3*a^2*b^7 + 13*A^3*a^3*b^6 + 36*A^3*a^
4*b^5 - 26*A^3*a^5*b^4 - 34*A^3*a^6*b^3 + 24*A^3*a^7*b^2 - 20*A^2*B*a^8*b + 6*A^2*C*a^8*b + A*B^2*a^5*b^4 + 4*
A*B^2*a^7*b^2 - 2*A^2*B*a^2*b^7 - 2*A^2*B*a^3*b^6 + 2*A^2*B*a^4*b^5 + 2*A^2*B*a^6*b^3 + 6*A^2*B*a^7*b^2 + 9*A*
C^2*a^7*b^2 + 6*A^2*C*a^3*b^6 + 6*A^2*C*a^4*b^5 - 18*A^2*C*a^5*b^4 - 12*A^2*C*a^6*b^3 + 30*A^2*C*a^7*b^2 - 12*
A*B*C*a^8*b - 6*A*B*C*a^6*b^3))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^
11*b^2) - (A*((8*tan(c/2 + (d*x)/2)*(4*A^2*a^10 + 8*A^2*b^10 + 4*B^2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2
*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*b^6 - 48*A^2*a^5*b^5 - 52*A^2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2
 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 + 9*C^2*a^8*b^2 - 24*A*B*a^9*b - 12*B*C*a^9*b - 4*A*B*a^3*b^7 + 2*A*B*a^5*b^5 +
 8*A*B*a^7*b^3 + 12*A*C*a^4*b^6 - 30*A*C*a^6*b^4 + 36*A*C*a^8*b^2 - 6*B*C*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 -
 a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2) + (A*((8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*a^
7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A*a^10*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b^7
 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*b^2 + 6*C*a^9*b^6 - 6*C*a^10*b^5 - 12*C*a^11*b^4 + 12*C*a^12*b^3 + 6*
C*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b - 6*C*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^
4 - 3*a^10*b^3 - 3*a^11*b^2) - (A*tan(c/2 + (d*x)/2)*(8*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*
b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2)*8i)/(a^3*(a^10*b + a^11 - a^4*b^7 -
a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2)))*1i)/a^3)*1i)/a^3 + (A*((8*tan(c/2 + (d*x)/2)*(4*A^2
*a^10 + 8*A^2*b^10 + 4*B^2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*b^6
 - 48*A^2*a^5*b^5 - 52*A^2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 + 9*C^2*a^8
*b^2 - 24*A*B*a^9*b - 12*B*C*a^9*b - 4*A*B*a^3*b^7 + 2*A*B*a^5*b^5 + 8*A*B*a^7*b^3 + 12*A*C*a^4*b^6 - 30*A*C*a
^6*b^4 + 36*A*C*a^8*b^2 - 6*B*C*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b
^3 - 3*a^9*b^2) - (A*((8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*a^7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A*
a^10*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b^7 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*b
^2 + 6*C*a^9*b^6 - 6*C*a^10*b^5 - 12*C*a^11*b^4 + 12*C*a^12*b^3 + 6*C*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b - 6*
C*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) + (A*tan(c/2
+ (d*x)/2)*(8*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*a^12*
b^4 - 32*a^13*b^3 - 8*a^14*b^2)*8i)/(a^3*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^
3 - 3*a^9*b^2)))*1i)/a^3)*1i)/a^3)))/(a^3*d) + (atan(((((8*tan(c/2 + (d*x)/2)*(4*A^2*a^10 + 8*A^2*b^10 + 4*B^2
*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*b^6 - 48*A^2*a^5*b^5 - 52*A^2
*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 + 9*C^2*a^8*b^2 - 24*A*B*a^9*b - 12*B
*C*a^9*b - 4*A*B*a^3*b^7 + 2*A*B*a^5*b^5 + 8*A*B*a^7*b^3 + 12*A*C*a^4*b^6 - 30*A*C*a^6*b^4 + 36*A*C*a^8*b^2 -
6*B*C*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2) + (((8*(4*
A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*a^7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A*a^10*b^5 + 6*A*a^11*b^4 + 34
*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b^7 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*b^2 + 6*C*a^9*b^6 - 6*C*a^10*
b^5 - 12*C*a^11*b^4 + 12*C*a^12*b^3 + 6*C*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b - 6*C*a^14*b))/(a^12*b + a^13 -
a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) - (4*tan(c/2 + (d*x)/2)*((a + b)^5*(a - b
)^5)^(1/2)*(2*A*b^5 - 2*B*a^5 - 5*A*a^2*b^3 - B*a^3*b^2 + 6*A*a^4*b + 3*C*a^4*b)*(8*a^15*b - 8*a^6*b^10 + 8*a^
7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2))/((a^13
- a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2)*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5
+ 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2)))*((a + b)^5*(a - b)^5)^(1/2)*(2*A*b^5 - 2*B*a^5 - 5*A*a^2*b^3 - B*a^3*b^
2 + 6*A*a^4*b + 3*C*a^4*b))/(2*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2)))*((a + b)
^5*(a - b)^5)^(1/2)*(2*A*b^5 - 2*B*a^5 - 5*A*a^2*b^3 - B*a^3*b^2 + 6*A*a^4*b + 3*C*a^4*b)*1i)/(2*(a^13 - a^3*b
^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2)) + (((8*tan(c/2 + (d*x)/2)*(4*A^2*a^10 + 8*A^2*b^10 +
4*B^2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*b^6 - 48*A^2*a^5*b^5 - 5
2*A^2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 + 9*C^2*a^8*b^2 - 24*A*B*a^9*b -
 12*B*C*a^9*b - 4*A*B*a^3*b^7 + 2*A*B*a^5*b^5 + 8*A*B*a^7*b^3 + 12*A*C*a^4*b^6 - 30*A*C*a^6*b^4 + 36*A*C*a^8*b
^2 - 6*B*C*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2) - (((
8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*a^7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A*a^10*b^5 + 6*A*a^11*b^4
 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b^7 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*b^2 + 6*C*a^9*b^6 - 6*C*
a^10*b^5 - 12*C*a^11*b^4 + 12*C*a^12*b^3 + 6*C*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b - 6*C*a^14*b))/(a^12*b + a^
13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) + (4*tan(c/2 + (d*x)/2)*((a + b)^5*(
a - b)^5)^(1/2)*(2*A*b^5 - 2*B*a^5 - 5*A*a^2*b^3 - B*a^3*b^2 + 6*A*a^4*b + 3*C*a^4*b)*(8*a^15*b - 8*a^6*b^10 +
 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*a^12*b^4 - 32*a^13*b^3 - 8*a^14*b^2))/((
a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2)*(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6
*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2)))*((a + b)^5*(a - b)^5)^(1/2)*(2*A*b^5 - 2*B*a^5 - 5*A*a^2*b^3 - B*a
^3*b^2 + 6*A*a^4*b + 3*C*a^4*b))/(2*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2)))*((a
 + b)^5*(a - b)^5)^(1/2)*(2*A*b^5 - 2*B*a^5 - 5*A*a^2*b^3 - B*a^3*b^2 + 6*A*a^4*b + 3*C*a^4*b)*1i)/(2*(a^13 -
a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2)))/((16*(4*A^3*b^9 + 4*A*B^2*a^9 - 4*A^2*B*a^9 - 2
*A^3*a*b^8 + 12*A^3*a^8*b - 18*A^3*a^2*b^7 + 13*A^3*a^3*b^6 + 36*A^3*a^4*b^5 - 26*A^3*a^5*b^4 - 34*A^3*a^6*b^3
 + 24*A^3*a^7*b^2 - 20*A^2*B*a^8*b + 6*A^2*C*a^8*b + A*B^2*a^5*b^4 + 4*A*B^2*a^7*b^2 - 2*A^2*B*a^2*b^7 - 2*A^2
*B*a^3*b^6 + 2*A^2*B*a^4*b^5 + 2*A^2*B*a^6*b^3 + 6*A^2*B*a^7*b^2 + 9*A*C^2*a^7*b^2 + 6*A^2*C*a^3*b^6 + 6*A^2*C
*a^4*b^5 - 18*A^2*C*a^5*b^4 - 12*A^2*C*a^6*b^3 + 30*A^2*C*a^7*b^2 - 12*A*B*C*a^8*b - 6*A*B*C*a^6*b^3))/(a^12*b
 + a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) - (((8*tan(c/2 + (d*x)/2)*(4*A^
2*a^10 + 8*A^2*b^10 + 4*B^2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*b^
6 - 48*A^2*a^5*b^5 - 52*A^2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 + 9*C^2*a^
8*b^2 - 24*A*B*a^9*b - 12*B*C*a^9*b - 4*A*B*a^3*b^7 + 2*A*B*a^5*b^5 + 8*A*B*a^7*b^3 + 12*A*C*a^4*b^6 - 30*A*C*
a^6*b^4 + 36*A*C*a^8*b^2 - 6*B*C*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*
b^3 - 3*a^9*b^2) + (((8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*a^7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A*a
^10*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b^7 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*b^
2 + 6*C*a^9*b^6 - 6*C*a^10*b^5 - 12*C*a^11*b^4 + 12*C*a^12*b^3 + 6*C*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b - 6*C
*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) - (4*tan(c/2 +
 (d*x)/2)*((a + b)^5*(a - b)^5)^(1/2)*(2*A*b^5 - 2*B*a^5 - 5*A*a^2*b^3 - B*a^3*b^2 + 6*A*a^4*b + 3*C*a^4*b)*(8
*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*a^12*b^4 - 32*a^13
*b^3 - 8*a^14*b^2))/((a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2)*(a^10*b + a^11 - a^4
*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2)))*((a + b)^5*(a - b)^5)^(1/2)*(2*A*b^5 - 2*B*a
^5 - 5*A*a^2*b^3 - B*a^3*b^2 + 6*A*a^4*b + 3*C*a^4*b))/(2*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b
^4 - 5*a^11*b^2)))*((a + b)^5*(a - b)^5)^(1/2)*(2*A*b^5 - 2*B*a^5 - 5*A*a^2*b^3 - B*a^3*b^2 + 6*A*a^4*b + 3*C*
a^4*b))/(2*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2)) + (((8*tan(c/2 + (d*x)/2)*(4*
A^2*a^10 + 8*A^2*b^10 + 4*B^2*a^10 - 8*A^2*a*b^9 - 8*A^2*a^9*b - 32*A^2*a^2*b^8 + 32*A^2*a^3*b^7 + 57*A^2*a^4*
b^6 - 48*A^2*a^5*b^5 - 52*A^2*a^6*b^4 + 32*A^2*a^7*b^3 + 24*A^2*a^8*b^2 + B^2*a^6*b^4 + 4*B^2*a^8*b^2 + 9*C^2*
a^8*b^2 - 24*A*B*a^9*b - 12*B*C*a^9*b - 4*A*B*a^3*b^7 + 2*A*B*a^5*b^5 + 8*A*B*a^7*b^3 + 12*A*C*a^4*b^6 - 30*A*
C*a^6*b^4 + 36*A*C*a^8*b^2 - 6*B*C*a^7*b^3))/(a^10*b + a^11 - a^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^
8*b^3 - 3*a^9*b^2) - (((8*(4*A*a^15 + 4*B*a^15 - 4*A*a^6*b^9 + 2*A*a^7*b^8 + 18*A*a^8*b^7 - 4*A*a^9*b^6 - 36*A
*a^10*b^5 + 6*A*a^11*b^4 + 34*A*a^12*b^3 - 8*A*a^13*b^2 - 2*B*a^8*b^7 + 2*B*a^9*b^6 + 6*B*a^12*b^3 - 6*B*a^13*
b^2 + 6*C*a^9*b^6 - 6*C*a^10*b^5 - 12*C*a^11*b^4 + 12*C*a^12*b^3 + 6*C*a^13*b^2 - 12*A*a^14*b - 4*B*a^14*b - 6
*C*a^14*b))/(a^12*b + a^13 - a^6*b^7 - a^7*b^6 + 3*a^8*b^5 + 3*a^9*b^4 - 3*a^10*b^3 - 3*a^11*b^2) + (4*tan(c/2
 + (d*x)/2)*((a + b)^5*(a - b)^5)^(1/2)*(2*A*b^5 - 2*B*a^5 - 5*A*a^2*b^3 - B*a^3*b^2 + 6*A*a^4*b + 3*C*a^4*b)*
(8*a^15*b - 8*a^6*b^10 + 8*a^7*b^9 + 32*a^8*b^8 - 32*a^9*b^7 - 48*a^10*b^6 + 48*a^11*b^5 + 32*a^12*b^4 - 32*a^
13*b^3 - 8*a^14*b^2))/((a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2)*(a^10*b + a^11 - a
^4*b^7 - a^5*b^6 + 3*a^6*b^5 + 3*a^7*b^4 - 3*a^8*b^3 - 3*a^9*b^2)))*((a + b)^5*(a - b)^5)^(1/2)*(2*A*b^5 - 2*B
*a^5 - 5*A*a^2*b^3 - B*a^3*b^2 + 6*A*a^4*b + 3*C*a^4*b))/(2*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9
*b^4 - 5*a^11*b^2)))*((a + b)^5*(a - b)^5)^(1/2)*(2*A*b^5 - 2*B*a^5 - 5*A*a^2*b^3 - B*a^3*b^2 + 6*A*a^4*b + 3*
C*a^4*b))/(2*(a^13 - a^3*b^10 + 5*a^5*b^8 - 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2))))*((a + b)^5*(a - b)^5)^(1/
2)*(2*A*b^5 - 2*B*a^5 - 5*A*a^2*b^3 - B*a^3*b^2 + 6*A*a^4*b + 3*C*a^4*b)*1i)/(d*(a^13 - a^3*b^10 + 5*a^5*b^8 -
 10*a^7*b^6 + 10*a^9*b^4 - 5*a^11*b^2))